## Acta Crystallographica Section E <br> Structure Reports <br> Online <br> ISSN 1600-5368 <br> Bis(pyrazine-2-carboxylato- $\kappa^{2} N^{1}, O^{2}$ )nickel(II) dihydrate

## Lujiang Hao* and Tongli Yu

College of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
Correspondence e-mail: lujianghao001@yahoo.com.cn

Received 16 July 2007; accepted 21 August 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.039 ; w R$ factor $=0.096$; data-to-parameter ratio $=11.7$.

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Ni}^{\text {II }}$ cation is four-coordinated by two N and two O atoms belonging to two pyrazine-2-carboxylate ligands. The $\mathrm{Ni}^{\mathrm{II}}$ atom occupies a special position at a centre of symmetry. Hydrogen bonds between water molecules, and between water molecules and carboxylate O atoms, stabilize the crystal structure.

## Related literature

For related literature, see: Church \& Halvorson (1959); Chung et al. (1971); Okabe \& Oya (2000); Serre et al. (2005); Pocker \& Fong (1980); Scapin et al. (1997).


## Experimental

## Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}} & a=5.5576(6) \AA \\
M_{r}=340.93 & b=7.3252(9) \AA \\
\text { Triclinic, } P \overline{1} & c=9.3021(11) \AA
\end{array}
$$

$$
\begin{aligned}
& \alpha=75.065(2)^{\circ} \\
& \beta=84.298(2)^{\circ} \\
& \gamma=71.503(2)^{\circ} \\
& V=346.93(7) \AA^{3} \\
& Z=1
\end{aligned}
$$

Data collection
Bruker APEX II CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\text {min }}=0.870, T_{\text {max }}=0.870$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.096$
$S=1.00$
1208 reflections
103 parameters
3 restraints

Mo $K \alpha$ radiation
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

> 1705 measured reflections 1208 independent reflections 1111 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 $W-\mathrm{H} 2 W \cdots \mathrm{O} 1 W^{\mathrm{i}}$ | $0.83(5)$ | $2.52(6)$ | $3.071(9)$ | $125(6)$ |
| O1 $W-\mathrm{H} 1 W \cdots \mathrm{O}^{\mathrm{ii}}$ | $0.84(2)$ | $2.11(3)$ | $2.941(4)$ | $167(7)$ |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x, y, z-1$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2122).

## References

Bruker (2001). SAINT-Plus, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chung, L., Rajan, K. S., Merdinger, E. \& Crecz, N. (1971). Biophys. J. 11, 469475.

Church, B. S. \& Halvorson, H. (1959). Nature (London), 183, 124-125.
Okabe, N. \& Oya, N. (2000). Acta Cryst. C56, 1416-1417.
Pocker, Y. \& Fong, C. T. O. (1980). Biochemistry, 19, 2045-2049.
Scapin, G., Reddy, S. G., Zheng, R. \& Blanchard, J. S. (1997). Biochemistry, 36, 15081-15088.
Serre, C., Marrot, J. \& Ferey, G. (2005). Inorg. Chem. 44, 654-658.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

## supplementary materials

Acta Cryst. (2007). E63, m2415 [ doi:10.1107/S1600536807041268]

## Bis(pyrazine-2-carboxylato- $\kappa^{\mathbf{2}} N^{\mathbf{1}}, O^{\mathbf{2}}$ )nickel(II) dihydrate

## L. Hao and T. Yu

## Comment

In recent years carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church \& Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe \& Oya, 2000; Serre et al., 2005; Pocker \& Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound bis(pyrazine-2carboxylato)nickel(II) hydrate (Fig. 1). The nickel cation is tetra-coordinated by two O an d two N atoms belonging to two pyrazine-2-carboxylate. Hydrogen bonds between symmetry operated water molecules, and water molecule and carboxylate oxygen atom stablize the crystal structure (Table 1 and Fig. 2).

## Experimental

The 8 ml etanol solution of nickel acetate ( 0.5 mmol ), pyrazine-2-carboxylic acid ( 1.0 mmol ) in a 25 ml Teflon-lined stainless steel autoclave was kept at 423 K for three days. Green crystals were obtained after cooling to room temperature with a yield of $35 \%$. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{Ni}$ : C 35.19, H 2.93, N $16.42 \%$; Found: C 35.11, H 2.97, N $16.38 \%$.

## Refinement

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of $\mathrm{d}(\mathrm{H}-\mathrm{H})=1.38(2) \AA$ and $\mathrm{d}(\mathrm{O}-\mathrm{H})=0.82(2) \AA$. All other H atoms were placed in calculated positions with a $\mathrm{C}-\mathrm{H}$ bond distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the respective carrier atom.

## Figures



Fig. 1. The molecular structure of (I) with the $30 \%$ probability displacement ellipsoids. Symmetry operator i: $1 x, y, z+1$.

## supplementary materials



Fig. 2. The packing diagram of the title compound along the direction [010].

## Bis(pyrazine-2-carboxylato- $\kappa^{2} N^{1}, O^{2}$ )nickel(II) dihydrate

## Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=340.93$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.5576$ (6) $\AA$
$b=7.3252$ (9) $\AA$
$c=9.3021(11) \AA$
$\alpha=75.065$ (2) ${ }^{\circ}$
$\beta=84.298$ (2) ${ }^{\circ}$
$\gamma=71.503(2)^{\circ}$
$V=346.93(7) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& F_{000}=174 \\
& D_{\mathrm{x}}=1.632 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \lambda=0.71073 \AA
\end{aligned}
$$

Cell parameters from 1208 reflections
$\theta=2.3-25.0^{\circ}$
$\mu=1.43 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Cube, green
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

1208 independent reflections
1111 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.3^{\circ}$
$h=-6 \rightarrow 5$
$k=-8 \rightarrow 8$
$l=-8 \rightarrow 11$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.096$
$S=1.00$
1208 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0571 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3}$

103 parameters
3 restraints
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\text {min }}=-0.51$ e $\AA^{-3}$
Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ni1 | 1.0000 | 0.0000 | 1.0000 | $0.0297(2)$ |
| C1 | $0.4654(6)$ | $0.1781(4)$ | $1.0641(4)$ | $0.0332(7)$ |
| C2 | $0.5285(6)$ | $0.3005(4)$ | $0.9152(4)$ | $0.0317(7)$ |
| C3 | $0.3444(6)$ | $0.4682(5)$ | $0.8416(4)$ | $0.0385(8)$ |
| H3 | 0.1797 | 0.5093 | 0.8789 | $0.046^{*}$ |
| C4 | $0.6886(8)$ | $0.4949(5)$ | $0.6507(4)$ | $0.0481(9)$ |
| H4 | 0.7394 | 0.5640 | 0.5604 | $0.058^{*}$ |
| C5 | $0.8593(7)$ | $0.3250(5)$ | $0.7289(4)$ | $0.0412(8)$ |
| H5 | 1.0228 | 0.2770 | 0.6919 | $0.049^{*}$ |
| N1 | $0.7810(5)$ | $0.2302(4)$ | $0.8615(3)$ | $0.0326(6)$ |
| N2 | $0.4262(7)$ | $0.5699(5)$ | $0.7071(4)$ | $0.0652(10)$ |
| O1 | $0.6702(4)$ | $0.0410(3)$ | $1.1256(2)$ | $0.0378(5)$ |
| O2 | $0.2286(4)$ | $0.2137(3)$ | $1.1166(3)$ | $0.0455(6)$ |
| O1W | $0.2352(8)$ | $0.0433(7)$ | $0.4397(4)$ | $0.1007(13)$ |
| H1W | $0.212(13)$ | $0.087(10)$ | $0.347(3)$ | $0.151^{*}$ |
| H2W | $0.369(8)$ | $-0.051(8)$ | $0.455(7)$ | $0.151^{*}$ |

## Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ni1 | $0.0229(3)$ | $0.0247(3)$ | $0.0327(3)$ | $-0.0004(2)$ | $0.0048(2)$ | $-0.0021(2)$ |
| C1 | $0.0315(17)$ | $0.0276(15)$ | $0.0401(18)$ | $-0.0068(13)$ | $0.0029(13)$ | $-0.0115(13)$ |
| C2 | $0.0307(16)$ | $0.0260(15)$ | $0.0393(18)$ | $-0.0074(13)$ | $0.0009(13)$ | $-0.0114(13)$ |
| C3 | $0.0374(18)$ | $0.0293(16)$ | $0.0450(19)$ | $-0.0040(14)$ | $-0.0017(14)$ | $-0.0100(14)$ |
| C4 | $0.061(2)$ | $0.0363(18)$ | $0.041(2)$ | $-0.0155(17)$ | $-0.0010(17)$ | $0.0021(15)$ |
| C5 | $0.0383(18)$ | $0.0409(18)$ | $0.0406(19)$ | $-0.0125(15)$ | $0.0048(15)$ | $-0.0046(15)$ |
| N1 | $0.0315(14)$ | $0.0272(13)$ | $0.0365(15)$ | $-0.0072(11)$ | $0.0026(11)$ | $-0.0065(11)$ |
| N2 | $0.074(3)$ | $0.0471(19)$ | $0.067(2)$ | $-0.0094(17)$ | $-0.0119(19)$ | $-0.0083(17)$ |


| O1 | $0.0340(12)$ | $0.0307(11)$ | $0.0390(13)$ | $-0.0014(9)$ | $0.0043(10)$ | $-0.0043(10)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O2 | $0.0343(13)$ | $0.0406(13)$ | $0.0530(15)$ | $-0.0033(10)$ | $0.0137(11)$ | $-0.0121(11)$ |
| O1W | $0.106(3)$ | $0.127(4)$ | $0.059(2)$ | $-0.051(3)$ | $-0.002(2)$ | $0.014(2)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| Ni1-N1 | 1.968 (3) |
| :---: | :---: |
| Ni1-N1 ${ }^{\text {i }}$ | 1.968 (3) |
| $\mathrm{Ni} 1-\mathrm{O} 1^{\text {i }}$ | 2.054 (2) |
| Ni1-O1 | 2.054 (2) |
| C1-O1 | 1.319 (4) |
| $\mathrm{C} 1-\mathrm{O} 2$ | 1.326 (4) |
| C1-C2 | 1.519 (4) |
| C2-C3 | 1.390 (5) |
| C2-N1 | 1.421 (4) |
| N1-Ni1-N1 ${ }^{\text {i }}$ | 180.00 (14) |
| $\mathrm{N} 1-\mathrm{Ni}-\mathrm{O} 1^{\text {i }}$ | 99.06 (9) |
| $\mathrm{N} 1^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 1^{\text {i }}$ | 80.94 (9) |
| N1-Ni1-O1 | 80.94 (9) |
| N1 ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{O} 1$ | 99.06 (9) |
| $\mathrm{O} 1^{\mathrm{i}}$ - $\mathrm{Ni} 1-\mathrm{O} 1$ | 180.0 |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ | 127.9 (3) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 111.3 (2) |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | 120.8 (3) |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$ | 124.7 (3) |
| C3-C2-C1 | 120.0 (3) |
| N1-C2-C1 | 115.3 (3) |
| C2-C3-N2 | 114.7 (3) |
| C2-C3-H3 | 122.6 |


| $\mathrm{C} 3-\mathrm{N} 2$ | $1.395(5)$ |
| :--- | :--- |
| $\mathrm{C} 3-\mathrm{H} 3$ | 0.9300 |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.378(5)$ |
| $\mathrm{C} 4-\mathrm{N} 2$ | $1.481(5)$ |
| $\mathrm{C} 4-\mathrm{H} 4$ | 0.9300 |
| $\mathrm{C} 5-\mathrm{N} 1$ | $1.355(4)$ |
| $\mathrm{C} 5-\mathrm{H} 5$ | 0.9300 |
| $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$ | $0.84(2)$ |
| $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$ | $0.83(5)$ |
| $\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$ | 122.6 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 2$ | $121.5(3)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$ | 119.3 |
| $\mathrm{~N} 2-\mathrm{C} 4-\mathrm{H} 4$ | 119.3 |
| $\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$ | $117.8(3)$ |
| $\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$ | 121.1 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$ | 121.1 |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$ | $120.9(3)$ |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{Ni} 1$ | $124.8(2)$ |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{Ni} 1$ | $114.3(2)$ |
| $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$ | $120.5(3)$ |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ni} 1$ | $117.65(19)$ |
| $\mathrm{H} 1 \mathrm{~W}-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W}$ | $110(3)$ |

Symmetry codes: (i) $-x+2,-y,-z+2$.

Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1W—H2W $\cdots \mathrm{O}_{1} \mathrm{~W}^{\mathrm{ii}}$ | $0.83(5)$ | $2.52(6)$ | $3.071(9)$ | $125(6)$ |
| O1W—H1W $\cdots \mathrm{O}^{\mathrm{iii}}$ | $0.84(2)$ | $2.11(3)$ | $2.941(4)$ | $167(7)$ |
| Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x, y, z-1$. |  |  |  |  |

Fig. 1


Fig. 2


